
Providing Easy Access to Distributed Medical Data
Bill Lord, Mark Tucker, Aninda DasGupta, and Mike Shneier

Philips Laboratories, Briarcliff Manor, New York

Many hospitals are fragmented along departmental
boundaries, leading to islands of information about
patients. This makes data integration difficult, and
therefore can increase hospital costs and reduce
patient care. This paper presents an architecture to
provide uniform and transparent access to computer-
ized data andfunctions available in this kind ofheter-
ogeneous computer environment.

INTRODUCTION
This paper presents an architecture to assist in access-
ing data and executing functions in a heterogeneous
and fragmented information-gathering environment
such as a hospital. The work is a component of a
project undertaken to address problems that arise
when medical practitioners need to access informa-
tion from diverse sources[5]. A number of potential
applications are envisaged, for example, reviewing a
patient's record before a visit, preparation for inter-
ventions or surgery, producing diagnostic reports fol-
lowing a visit or procedure, and tele-consultations.
Our project provides the information and tools needed
to generate reports and review current patient records.
A prototype application has been developed in the
domain of cardiology.

Many of our goals are shared by other groups [7, 8,
12]. For example, the Hermes workstation project at
Erasmus University in the Netherlands tries to inte-
grate existing hardware and software into a physi-
cian's workstation [8, 91 without requiring substantial
reprogramming. Our Data Server is a more general
version of the Data Translator, Command Generator,
and Network Facilitator modules that they have
implemented, but the goals of hiding the details of
communications protocols, the location of data, and
the command language needed to retrieve the data are
the same. Marrs et. al. at Washington University
School of Medicine in St. Louis have implemented a
system that integrates data from distributed heteroge-
nous systems overnight, providing a global, unified
view of this data by duplicating it on a central
server[7]. Our Data Server provides the same global,
unified view of the data, but without creating a new
database.

The Current Dilemma in Medical Informatics
A typical hospital is made up of islands of informa-
tion. Figure 1 shows a representative subset of a hos-
pital's collection of computer systems. These systems
are usually built around departments in a hospital,
with each department storing the information it col-
lects in its own computer system. Without a network
between these systems, data from one departnent's
computer system is often printed to paper, carried or
faxed to another department, and then either scanned,
re-entered manually or kept as paper. In fact, most
patient records are still paper based even though
almost 40 percent of their records were originally
computer-generated [2].

RIS

HIS - Hospital Info. Sys.Key

WS - Work Station
BPS - Electrophysiology
VS - Viewing Station

S VS VS

PACS - Picture Archiving
and Comm. Sys.

MR - Magnetic Resonance
CT - Computed Tomography
RIS - Radiology Info. Sys.

Figure 1. Islands of Information.

Simply networking different departments together is
not sufficient to provide access between departments.
There is still the potential problem of each system
having a different operating system and/or database
query language since each department typically
chooses the computer system that best suits its needs.
To obtain information from the islands requires
knowledge specific to each system that will be
accessed. The premise behind our work is that end
users and application programmers want to be insu-
lated from the details of data access. They want to
think only in terms of available functionality and data
models. They do not want to have to think in terms of
protocols, data and function location, and data for-
mats. Thus, we have developed methods to hide these
system-specific details. Our solution focuses on infor-
mation access techniques that enable site-indepen-
dence. It is designed to allow the system to be

0195-4210/94/$5.00 (1994 AMIA, Inc. 382

introduced at a new location without requiring addi-
tional programming.

Possible Solutions
A common approach to integrating information from
a large number of sources is to use a hub concept, in
which a central location serves to integrate and often
to store the information. In most of these systems
(e.g., [3, 6, 7]), the information sources are expected
to transmit information to the hub at scheduled times
or as it becomes available. The hub integrates the
information and responds to queries from users or
other systems. It can also redistribute information. An
advantage of the hub concept is that it is relatively
easy to implement and may simplify the problem of
maintaining consistency in the data. Disadvantages
are that the hub has to store copies of all information,
that network traffic is increased, and that the hub can
potentially become a bottleneck.

The approach that we have taken is based on what we
call a Data Server. The Data Server presents a single
data model for the collection of a hospital's data. It
functions by having knowledge of where and how
requested data are stored, not by storing all data in a
central repository. The data server accepts requests
and forwards them to the appropriate system in the
proper format for that system.

What the hub systems and the Data Server have in
common is that they both hide from the user the idio-
syncrasies of the information sources. While a hub
system stores data, the Data Server stores information
on how and from where to retrieve and manipulate
data. In both cases, a connection to the equipment
must be built. If there is no well-defined query lan-
guage (such as SQL) and the system does not support
HL7 [4], then a custom data interface must be written
and installed on the system.

Our initial goal for the Data Server was to provide
database access to all hospital data without needing
knowledge of where the data actually reside. In the
same way that we want to provide uniform access to
data, we also want to be able to access the collection
of available functions (such as image processing, for
example) from all the hospital's systems in a uniform
way.

The purpose of this paper is to discuss the architecture
and various configurations for our Data Server. To set
the stage for this, we give a brief overview of what a
simple Data Server configuration does and how it
works.

OVERVIEW OF THE DATA SERVER
The Data Server provides uniform and transparent
access to electronically available information in a
hospital. The Data Server unifies all communication
needs and provides common entry and exit points for
exchanges between different systems. The Data
Server is the only system that needs to know all the
communication protocols and database query lan-
guages used in hospitals, clinics, or satellite offices.
When it receives a request, the Data Server must
determine where to find the necessary information
and must also know how to ask the owner of the infor-
mation to retrieve it. It often has to break a request
into a number of simpler requests, each of which is
sent to a different information source using the lan-
guage expected by that source. Information may be
returned in any order and at any time, so the Data
Server has to reconstruct the answer to the request,
remembering which pieces belong to which requester,
and send the answer using the proper protocol back to
the user. Because many systems that supply informa-
tion are dedicated to information-gathering, they may
not be able to accept or respond to requests except at
specified times. Thus, the Data Server must handle
queues both for requests and for responses. The archi-
tecture allows for more than one Data Server to oper-
ate at the same time, so bottlenecks can be avoided.

Data Dictionaries
Data Dictionaries are a key resource of the Data
Server. Data Dictionaries give the appearance, and are
accessed as if they were simple tables of a relational
database. However, instead of containing the actual
data sought, they contain the precise descriptions
needed to retrieve the data requested from its source.
Entries include information about the device on which
the requested information is stored, how to format a
query for that device, how to interpret a response
from the device, and if needed, how to expand the sin-
gle query into a collection of multiple queries. This
latter information allows for both simple and complex
queries to appear to the requesting application pro-
gram as simple requests. For example, a request from
an admissions workstation for the description of a
patient's last hospital visit will be expanded in the
Data Server into requests to one or more devices for a
date, location, and problem for that visit. These
results will be collected on the Data Server, formatted
into a single response and sent back to the requesting
workstation. Specifying how to interpret results from
various systems allows for the data server to run func-
tions on collected data to adjust for mismatched sche-
mas before sending the results back to the requesting

383

application. An example of this would be an entry in
the Data Dictionary that specifies that a function to
convert pounds to kilograms be run whenever a
patient's weight is obtained from the hospital's Hospi-
tal Information System (HIS).

We have developed a graphical user interface for
specifying the layout and contents of the data dictio-
naries. This specification will typically be done by a
system administrator who is knowledgable about the
data schemas of each of the individual systems that is
to be integrated into the virtual database of the Data
Server. The Data Dictionary can be set up as a single
global view of the union of all the data from all the
systems in the hospital, or it can be set up to have a
collection of multiple views of either all the data or
various subsets of it.

Data Server Functions. We model how the Data
Server works at the function level after work in the
object oriented systems community [11]. This model
requires all systems on a network to support a stan-
dard way of registering their addresses and what they
can offer to others, as well as an authentication and
access control mechanism. The Data Server becomes
a distributed services broker, acting as an intermedi-
ary between clients (processes needing services) and
service providers (processes controlling access to ser-
vices). Services may include much more than infor-
mation retrieval or storage. The client does not need
to know where on the network the services are pro-
vided, or how the desired results are generated. Simi-
larly, the server does not need to know for which
clients it is providing the information (assuming that
the authentication and security aspects are properly
dealt with). Two evolving standards activities that
address this architecture are the ISO/CCITT Open
Distributed Processing (ODP) effort and the Object
Management Group's Coimmon Object Request Bro-
ker (CORBA) [10, 11].

Data Server Components
The Data Server consists of three kdnds of compo-
nents: client adapters, a request processor, and server
adapters.

Client Adapter. The client adapter accepts incoming
requests in a particular protocol from a client and calls
an interface to the request processor. The role of the
adapter is to convert system-specific protocols to and
from a standard format. A client, in our terminology,
is any process that requests information from a Data
Server. Client adapters can be built for any known
protocol. Currently we have client adapters for ACR-

NEMA 2.0, HL7, and an internal protocol [1, 4].
These adapters can all run within a single process, or
run as separate processes. More than one of each kind
of adapter can run simultaneously. It is possible to
have one adapter per client. A client adapter can run
on the same system as the request processor portion of
the Data Server, or separately.

Request Processor. The request processor supports
different kinds of requests. Our discussion focuses on
one class of request, data queries. The request proces-
sor for data queries consists of a'request parser that
creates request objects, and a request engine that exe-
cutes them. In the request parser, queries are parsed
(broken down) into atomic database calls. The collec-
tion of atomic calls forms the main content of a
request object. These atomic database calls consist
only of requests that are simple enough to be handled
even by the least sophisticated of databases. For
example, a query to find all of the reports written for
all catheterization procedures performed on patient
Jane Doe, would be broken in to three simple
requests: 1. Find Patient ID given Patient Name of
Jane Doe, 2. Find all the Procedure IDs for catheter-
ization procedures performed with the Patient ID
returned from the first simple request, and 3. Find all
the Reports associated with all the Procedure IDs
found in the second simple request. When sent to the
request engine the atomic calls consist of three param-
eters: a relation name, an attribute name to search in,
and the attribute's name from which to obtain the
result. When the request is ready to be processed, a
fourth parameter is added: the value to search for. If
the original query to the request processor ends up as
more than one atomic call, then each atomic call may
have to go to a different system.

The request engine sequentially takes 'each atomic call
and determines which process on the network can
answer it. We refer to these processes as "servers,"
which usually, but not necessarily, run on a system
other than the Data- Server. Examples of typical serv-
ers are HIS and RIS systems. The atomic call is
passed on to the server adapter for the server that
holds the desired information. After passing on the
atomic call, the request engine is free to service
another request object. Further processing of a request
object can be resumed after the server replies. After
an atomic call is completed and the request engine is
re-entered, the results of the atomic call will be used
as the search values for the next atomic call

Server Adapter. A server adapter fulfils two pur-
poses. First, it determines if the system to which the

384

request is destined can handle multiple requests or
not. Second, when the request is ready to send, the
server adapter translates the parameters given by the
atomic call into a system-specific request needed to
obtain the desired information. If the information
server can handle multiple requests, the request is sent
out. If not, the request is put on a queue for that sys-
tem. Because the server adapter may be required to
maintain a queue for the server, only one server
adapter can exist for each server. Server adapters can
run one per process, or grouped into one or more pro-
cesses.

DATA SERVER ARCHITECTURES
There is a lot of flexibility in the architecture for put-
ting together the components of the Data Server. The
simplest architecture has all three Data Server compo-
nents running in the same process. This configuration
is shown in Figure 2 and is based on the representa-
tive systems of a hospital presented in Figure 1.

send the requestor enough information about access-
ing the data that the requestor can then access it
directly.

The second approach we have taken to alleviate the
problem of a Data Server becoming a bottleneck is to
have parts of the Data Server duplicated, and running
in a distributed environment. One logical configura-
tion is to use a client adapter and request processor for
each cluster, and a server adapter for each information
source. Each client adapter/request processor pair can
run separately in its own address space, or they can
co-exist in a process with the client. Similarly, a
server adapter and server can run separately or within
the same process. Figure 3 shows different configura-
tions of the Data Server.

However, this configuration can lead to a bottleneck.
We address this potential problem in two ways. First,
most requests made to the Data Server are of low
bandwidth while the answers may require high band-
width. For example, a request for a patient's cine loop
from a recent catheterization could be less than 100
bytes long. The data set requested could be on the
order of tens of megabytes. Sending this from the
archives system to the requester via the Data Server
could take twice as long as sending it directly, and
would tie up valuable resources. Instead the archives
can either send the data set directly to the requestor, or

FUNCTION BASED INTERFACES
In the preceding sections we examined the use of the
Data Server to provide uniform access to data. By
expanding on the idea, the Data Server can become a
means to uniformly access many of the other func-
tions offered by the systems in a hospital, such as
image processing, text processing, and drug interac-
tion checking. In a manner similar to how it keeps
knowledge of where data reside and the protocols
required to retrieve them, the Data Server can also
keep track of where available functions reside and
how they can be executed.

In an ideal setup, each system on a network would
advertise its capabilities and provide a standard

385

method of accessing them. In this case the Data
Server, if necessary at all, would only have to act as
the "yellow pages." Because this ideal world does not
exist yet, the Data Server is designed to give the
appearance that it does.

Functions do not have to be a one-to-one mapping to
the actual functions of the various systems on the hos-
pital's network. For example a function on the request
processor may advertise that it can supply annotated
images, when in fact no system in the hospital sup-
plies this capability directly. Instead the request pro-
cessor has to retrieve the image in question from a
PACS system, and then retrieve the dictation from
another system and combine the two files together in
the appropriate multimedia format for return to the
requesting system.

CONCLUSION
Using architectures like those available with our Data
Server allows application programmers, and therefore
end users, to think in terms of a data model and func-
tion calls, not system names and locations, protocols,
and multiple data models. Many computer manufac-
turers and software companies support the concept of
function-based interfaces to their systems. Systems
that are function based are more prevalent each day.
Our Data Server is able to bridge the gap between
older and current day systems, providing the benefits
of seamless data integration and function specifica-
tion.

References
[1] ACR-NEMA Dig. Imaging and Comm. Stds.
Ctee., ACR-NEMA 300-1985:Digital Imaging and
Communications. 1985

[2] M. L. Cannavo. Fitting radiology into the hos-
pital of tomorrow. Diagnostic Imaging, pages 131-
133. April 1990.

[3] A. C. Curtis. Multi-facility integration: An
approach to synchronized electronic medical records
in a decentralized health care system. In Lun et al.,
editors, Proceedings of the Seventh World Congress
on Medical Informatics (MEDINFO 92), Geneva,
Switzerland, September 1992, pages 138-143. IFIP
and IMIA, North-Holland.

[4] Health Level Seven, 900 Victor's Way Suite
122, Ann Arbor, MI 48108. Health Level Seven: An
Application Protocol For Electronic Data Exchange
In Healthcare Environments. Version 2.1.

[5] H. K. Huang, R. L. Areson. Multimedia
demands integrated databases. Diagnostic Imaging.
Vol. 15, #11. November 1993.

[6] S. B. Johnson, P. D. Clayton, D. Fink, et al.
Achievements in phase lII of an integrated academic
information management system. In Lun et al., edi-
tors, Proceedings of the Seventh World Congress on
Medical Informatics (MEDINFO 92), Geneva, Swit-
zerland, September 1992, pages 117-123. IFIP and
IMIA, North-Holland.

[7] K. A. Marrs, S. A. Steib, C. A. Abrams, and M.
G. Kahn. Unifying Heterogeneous Distributed Clini-
cal Data in a Relational Database. In Safran, editor,
Seventeenth Annual Symposium on Computer Appli-
cations in Medical Care, Washington, D. C., Novem-
ber 1993. American Medical Informatics Association,
McGraw-Hill. 1994. Pages 644-648.

[8] E. M. van Mulligen. An Architecture for an
Integrated Medical Workstation, Its Realization and
Evaluation. Ph.D. thesis, Erasmus University, Rotter-
dam, The Netherlands, September 1993.

[9] E. M. van Mulligen, T. Timmers, and D. F. F.
Leao. A framework for uniform access to data, soft-
ware and knowledge. In P. D. Clayton, editor, Fif-
teenth Annual Symposium on Computer Applications
in Medical Care, Washington, D. C., November 1991.
American Medical Informatics Association, IEEE
Computer Society Press.

[10] J. R. Nicol, C. T. Wilkes, and F. A. Manola.
Object orientation in heterogeneous distributed com-
puting systems. IEEE Computer, 26(6):57-67, June
1993.

[11] Object Management Group, Framingham Cor-
porate Center, 492 Old Connecticut Path, Framing-
ham, MA 01701-4568. The Common Object Request
Broker: Architecture and Specification. OMG Docu-
ment Number 92.12.1, 1991.

[12] J. R. Scherrer, R. Baud, D. Hochstrasser, and
0. Ratib. An integrated hospital information system in
Geneva. M. D. Computing, 7(2):81-89, 1990.

386

